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An experimental effort has been conducted on an aerospace-quality helical gear train to investigate the thermal 
behavior of the gear system as speed, load, and lubricant flow rate were varied. Temperature test data from a helical 
gear train at varying speeds and loads (to 5000 hp and 15000 rpm) was collected using thermocouple rakes and axial 
arrays. The instrumentation was able to capture the radial and axial expelled lubricant-air environment (fling-off 
lubricant) that is expelled during the gear meshing process. Effects of operational characteristics are presented. 
 

 
Introduction and Background 
 

 

High speed, heavily loaded, and lightweight gearing 
components are common-place in rotorcraft systems. 
These systems are expected to deliver high power from 
the gas turbine engines to the high-torque/low-speed 
rotor with reduction ratios in the range of 25:1 to 100:1 
(refs. 1 to 14). Gearing systems in these extreme duty 
applications can also have thermal behavior issues due 
to the high pitch line velocities. While design 
considerations for bending and contact capacities are 
usually considered initially, high speed gearing design 
needs to carefully consider the consequences of pitch 
line velocities approaching 25000 feet per minute. 

The thermal behavior characteristics of mechanical 
components is the least understood and has received 
the least amount of attention in the open literature 
(refs. 15 to 19. The thermal behavior of a system can 
cause a success from a load capacity (bending and 
contact stress) viewpoint into a failure from the 
resultant thermal induced failure (high operational 
temperatures, gear tooth scoring, and high drive system 
losses). 

In rotorcraft drive systems, such as that of tiltrotors 
(fig. 1), a helical gear train is used to separate the 
parallel engine and rotor shafting on the aircraft. 
Therefore, the drive system is not only needed to 
provide the necessary reduction between the engine 
and rotor, but also has to make the system operate in 
emergency conditions (refs. 20 and 21) such as one 
engine inoperative (fig. 2) (ref. 22). 

For the rotorcraft of interest in this study, the gearing 
between the engine and the rotor is composed of a 
series of helical gears (or a gear train is utilized). This 

part of the drive system operates at very high rotational 
speed and carries the full power of the engine during 
normal operation and must operate at high load if the 
other engine fails.  

In this type of arrangement the idler gears receive 
two thermal cycles per revolution. Since these gears 
have two thermal cycles per revolution and are 
extremely light-weight (low heat carrying capacity) the 
successful operation of the system in all possible 
normal and emergency conditions can be difficult. 

The objective of this paper is to present the effects of 
speed, load, and lubricant jet pressure (flow) of the on 
the operating performance (power loss) and resultant 
fling-off temperatures. An enhanced measurement 
capability will be presented in this study. A high-speed 
helical drive train facility that utilizes full scale, 
aerospace quality components was used to generate the 
data presented in this study. The system can operate to 
15000 rpm (to simulate the engine input rotational 
speed) and at power levels to 5000 hp. 
 
 
Test Facility, Test Hardware, Data 
Acquisition, and Test Procedure 
 
Test Facility 
 

The test facility used for this study is shown in 
figure 3 (ref. 23). The facility is a closed-loop, torque-
regenerative testing system. There is a test gearbox and 
slave gearbox that are basically mirror images of each 
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other. Each gearbox has an input gear, three idlers, and 
one bull gear. The gearboxes are joined together 
through the input gears and bull gears via shafting. The 
facility is powered by a 500 hp DC drive motor and its 
output speed is increased using a speed-increasing 
gearbox. The output of the speed-increasing gearbox 
then passes through a torque and speed sensor before 
connecting to the slave gearbox. The entire test stand 
configuration is shown in figure 4. Each gearbox has 
separate supply and scavenge pumps and reservoirs. 
Lubrication system flow rate is controlled using the 
supply pressure. Temperature is controlled via 
immersion heaters in the reservoir and heat exchangers 
that cool the lubricant returned from the gearboxes. 
Each lubrication system has a very fine 3-micron 
filtration. Nominal flow rate into the test or slave 
gearboxes at 80 psi is approximately 15 gpm. 

The lubricant used in the tests to be described was a 
synthetic turbine engine lubricant (DoD–PRF–85734). 
This lubricant is used in gas turbine engines as well as 
the drive systems for rotorcraft. 
 
 
Test Instrumentation 
 

The test instrumentation used in this study beyond 
those of reference 24 included thermocouple rakes for 
locations across the face width and thermocouple 
arrays at the exit region from the helical gear axial 
pumping location. The test instrumentation measured 
the fling-off lubricant from the gears in the radial and 
axial directions. Locations of the two different 
measurements are shown in figure 5 (locations of rake 
and array probes). Shown in figures 6 and 7 are 
photographs of the instrumentation rakes and arrays 
respectively. The rake probes had 5 thermocouples 
across the face width and the array sensors had 
9 thermocouples distributed as shown in figure 7. The 
thermocouple rakes were located at three positions as 
close as possible to the location of oil being flung 
radially out of mesh. The thermocouple arrays were 
centered at the axial point where the pitch diameter of 
the meshing gears meet. 
 
 
Test Hardware 
 

The test hardware used in the tests to be described is 
aerospace quality hardware. The basic gear design 
information is contained in table 1. The input and bull 
gear shafts have ball bearings to contain the resultant 
thrust loads whereas the idler gears only have roller 
bearings. The partially disassembled test gearbox is 
shown in figure 8. The bearing inner race is integral to 
the shafts on the idler gears and at other radially-
loaded bearings on the input and bull gear shafts. 

Shrouds for the gears were used to minimize the 
windage losses that high-speed gear systems possess 
but were partially or totally removed for some of he 
tests conducted. Figure 9 shows the shrouds installed 
in the test gearbox. 
 
 
Data Acquisition 
 

The test facility data system monitors three 
important facility parameters during operation. Speed, 
torque (supplied torque and loop torque), and 
temperature measurements were made during all the 
testing conducted. The test system loop torque is 
measured on the shaft connecting the bull gears from 
the test and slave gearboxes. A telemetry system was 
utilized in this location.  

The data recording system used in this study has the 
capability of taking data from all parameters at a rate 
of one sample per second. The data is displayed to the 
test operator in real time. Data is stored in a 
spreadsheet format and each sensor can be viewed at 
any time during a test and when post processing the 
results. 
 
 
Test Operation 
 

The test procedure that was followed for collecting 
the data to be presented was the following. For a given 
set of conditions (speed, load, lubricant pressure and 
lubricant oil inlet temperature) the facility was 
operated for at least 5 minutes or until the temperatures 
of interest had stabilized.  
 
 
Results and Comparisons 
 

In high-speed gear trains power losses are due to 
many mechanisms. These mechanisms include the gear 
sliding and rolling losses, bearings, and seals. Also of 
great concern when pitch line velocities are high are 
the effects of the windage losses (due to the gearing 
members doing work on the ambient air-oil 
environment). In low speed systems, this last effect is 
not an issue but as pitch line velocity (size of the 
gearing and rotational speed) become high, this 
mechanism can be a substantial portion of the total 
losses. In some recent studies (refs. 24 to 26), these 
effects have been analyzed and experimentally 
quantified using direct effect tests that have been 
conducted. In figures 10 and 11, the effect of jet 
pressure and shaft speed is shown. Varying speed had 
the largest effect on the temperature measured. 
Varying the jet pressure had a much smaller effect on 
temperature change. 
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Fling-Off Data 
 

As mentioned earlier, tests were run at a condition 
until steady state was achieved. A typical test is shown 
in figure 10. In this figure a series of tests at specific 
set points were conducted. The data for several key 
locations is shown during the test that lasted in excess 
of one hour. The test conditions for the data shown in 
figure 10 are contained in table 2. In this test, the speed 
and flow conditions were changed while keeping the 
load on the test gearbox nearly constant. The axial 
temperatures were from the center array thermocouple 
and the radial temperatures were from the mid-face 
width thermocouple position. A close up of part of the 
data is shown in figure 11. From this figure the typical 
relationship between the axial and radial fling-off 
temperatures from the mid face width and mid array 
locations are indicated. The axial fling-off 
temperatures were always higher for the idler-idler 
gear locations. The bull gear axial temperatures were 
always the lowest as would be expected given the size 
(heat capacity) of this component. The oil out 
temperature could be nearly 100 °F less than the 
highest fling-off temperature measured. 
 
 
Shroud-Lubricant Jet Pressure Effects on 
Operational Performance 
 

The effects of shrouding arrangement and lubricant 
jet pressure will now be described on the temperature 
increase in the lubricant and power loss on the gearing 
system. The test data to be presented were at two 
speeds for the test system (at 12500 and 15000 rpm) 
yet the load on the system was run at similar loading 
conditions.  

For either measured parameter, temperature increase 
across the test gearbox or amount of power to drive the 
entire facility, are effected by the shrouding. In 
figure 12 the effect of shrouding condition and 
lubricant supply pressure (changes the flow rate of 
lubricant) are shown. At either speed condition the full 
shroud case was the best over all speed and load 
conditions except when the flow was reduce to 
approximately 60 psi. Using just the bottom half of the 
shrouds resulted in high temperature increase across 
the test gearbox. The no-shroud condition could not be 
conducted at 15000 rpm due to operational instability 
thought to be due to the lubricant-bull gear interaction. 

A similar trend is shown in figure 13 for amount of 
power supplied to the entire test facility for shroud, 
bottom half shroud and no shroud conditions. Full 
shrouded gears require the least amount of drive motor 
power for the tests conducted. 
 
 

Rake Data 
 

An example of the data taken is shown in figure 14 
for the 1st and 2nd idler location. The thermocouple 
numbering shown in figure 5(a) is used to describe 
where the temperature measurement was made. The 
effect of loop torque at two different speeds is shown. 
The highest temperatures across the face width 
position tended to be at the exit location. The 
maximum temperature found at this location for the 
conditions presented was on the order of 300 °F. A 
change in speed from 12500 to 15000 rpm constant 
torque caused an increase in temperature as high as 
25 to 30 °F.  
 
 
Array Data 
 

An example of some of the data taken from the axial 
pumped lubricant-air environment for six conditions is 
shown in figure 15, and further described in table 3. 
The temperature measured for six different conditions 
for the thermocouple array at the 2nd and 3rd idler 
location is shown. The symbols shown in figure 15 are 
related to their location on the array sensor. Speed-load 
conditions I to III are for 12500 rpm and 3 load 
conditions (19000, 39000, and 58000 in•lb bull gear 
shaft torque). Conditions IV to VI are for 15000 rpm 
and the same three increasing load levels. Lubricant 
pressure was approximately 80 psi and oil inlet 
temperature of approximately 200 °F. The centered 
thermocouples in the radial direction indicated the 
highest temperatures at this array position. From the 
data shown the temperature could vary up to 40 °F 
over this small measurement region.  
 
 
Summary and Conclusions 
 

The thermal behavior of high-speed helical gear 
trains for various conditions has been presented. The 
facility utilizes aerospace - quality components and 
operates at pitch line velocities up to  
25000 ft/min and at power levels to 3750 kW  
(5000 hp). Tests were conducted at high speed and 
loads with data taken using temperature rakes and 
arrays to measure the lubricant fling off temperatures. 
The following results were attained: 
 
1. Speed and load affected lubricant fling off 

temperatures measured across the gear mesh face 
width and at the axial location due to the helical 
gear mesh axial pumping. Changing speed from 
12500 to 15000 rpm had a more dramatic effect 
than increasing load from 30 to 100 percent. 
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2. Reducing the lubricant jet pressure from 80 to 
60 psi reduced the power necessary to drive the 
facility, but the effect was rather small 
(approximately 5 hp) and caused the lubricant 
temperature difference between inlet and exit to 
increase up to 10 °F. 

3. Shrouding for this particular facility produces the 
best results for the experiments conducted. 
Anything less than full shrouding of this gear train 
caused higher power loss and increase temperature 
difference between the inlet and exit lubricant 
temperature. 
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TABLE 1.—BASIC GEAR DESIGN DATA 
Number of teeth input and 2nd idler 
1st and 3rd idler 
Bull gear 

50 
51 

139 
Module, mm (diametral pitch (1/in.)) 3.033 (8.375) 
Face width, mm (in.) 67.2 (2.625) 
Helix angle, degree 12 
Gear material Pyrowear EX–53 

 
 
 

TABLE 2.—CONDITIONS FOR FIGURE 10 DATA. TESTS 
WERE RUN WITH THE OUTPUT TORQUE EQUAL TO 

19000 IN•LB, 200 °F LUBRICANT INLET TEMPERATURE 
Condition Input shaft speed,  

rpm 
Jet pressure,  

psi 
A START UP 81 
B 12500 81 
C 15000 81 
D 12500 71 
E 15000 71 
F 12500 61 
G 15000 61 
H 15000 81 

 
 
 

TABLE 3.—CONDITIONS FOR FIGURE 15 DATA. JET PRESSURE AND 
OIL INLET TEMPERATURE HELD CONSTANT AT 80 PSI AND 

APPROXIMATELY 200 °F, RESPECTIVELY 

Condition Input shaft speed, 
rpm 

Loop power, 
hp 

Drive motor power, 
hp 

I 12500 1422 133 
II 12500 2809 143 
III 12500 4169 153 
IV 15000 1672 195 
V 15000 3420 208 
VI 15000 5021 218 
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Figure 1.—Tiltrotor aircraft. 
 
 
 

 
 

 
Figure 2.—Typical tiltrotor aircraft propulsion system arrangement. 



NASA/TM—2005-213632  7

 
 

 
 

Figure 3.—NASA High-Speed Helical Gear Train Test Facility. 
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Figure 4.—Layout of NASA High-Speed Helical Gear Train Test Facility. 
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Figure 5(a).—Location and orientation of thermocouple rakes in the test gearbox. 
 
 
 
 
 
 

 
Figure 5(b).—Location and orientation of thermocouple arrays in the test gearbox. 
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Figure 6.—Photograph of thermocouple rake used in these tests. 
 

 
 

Figure 7.—Photograph of thermocouple array used in these tests. 
 

 
Figure 8.—NASA High-Speed Helical Gear Train Test Facility components. 
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Figure 9.—Photographs of shrouding on the test gearbox (left entire gearbox and right photograph  
is a close up of the input-1st idler gear shrouds). 
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Figure 10.—Effect of operating condition on temperature. 
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Figure 11.—Effect of operating condition on temperature (part of fig. 10). 
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Figure 12.—Effect of lubricant jet pressure, input shaft speed, and shrouding  
on temperature increase across the test gearbox. 
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Figure 13.—Effect of lubricant jet pressure, input shaft speed, and shrouding  
on power to drive the test facility. 
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Figure 14.—1st and 2nd idler gears axial rake data, effect of speed on operating temperature,  
oil inlet temperature approximately 200 °F, 80 psi lubricant jet pressure. 
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Figure 15.—2nd and 3rd idler array sensor data as a function of load condition. 
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An experimental effort has been conducted on an aerospace-quality helical gear train to investigate the thermal behavior
of the gear system as speed, load, and lubricant flow rate were varied. Temperature test data from a helical gear train at
varying speeds and loads (to 5000 hp and 15000 RPM) was collected using thermocouple rakes and axial arrays. The
instrumentation was able to capture the radial and axial expelled lubricant-air environment (fling-off lubricant) that is
expelled during the gear meshing process. Effects of operational characteristics are presented.






